Le terme d'insaturation peut donc indiquer l'existence de liaisons multiples (doubles et triples) au sein de la molécule étudiée, à l'inverse, un composé saturé est un composé présentant uniquement des liaisons simples. Ainsi, le cas le plus simple de composé insaturé à double liaison carbone-carbone est l'éthène (ou éthylène : H2C=CH2), dérivé de l'éthane (H3C-CH3), le cas le plus simple de composé à liaison triple carbone-carbone est l'acétylène (ou éthyne : HC≡CH). La liaison carbone-carbone dans l'éthane est une liaison sigma (simple) engageant deux électrons (un provenant de chaque carbone) alors que dans l'éthène, la liaison carbone-carbone est double (liaison sigma et liaison pi), engageant quatre électrons (deux en provenance de chaque carbone) et que dans l'éthyne, la liaison carbone est triple (liaison sigma et deux liaisons pi) engageant six électrons (trois en provenance de chaque carbone). Le terme d'insaturation indique en fait le fait que la liaison π peut être ouverte - par divers types de réactions chimiques, avec ou sans catalyseurs - et les électrons ainsi libérés engagés dans des liaisons covalentes avec d'autres atomes (typiquement de l'hydrogène).
Ainsi, une ouverture de la liaison π dans l'éthylène (ou des liaisons π pour l'acétylène) et une addition de dihydrogène H2 permet d'obtenir de l'éthane, le composé saturé correspondant.
D'un point de vue structural (distinct du point de vue énergétique) dans le cas de l'éthène, le carbone passant de trivalent (hybridation sp2, plane) à tétravalent (sp3, tridimensionnelle), « suscite » un degré de liberté supplémentaire permet de passer d'une configuration à une autre par rotation autour de la liaison carbone-carbone. Dans le cas de l'éthyne, la « rupture » des liaisons π permet de passer d'un composé monodimensionnel (linéaire en raison de l'hydridation sp) à un composé tridimensionnel, soit un gain de deux degrés de liberté.
Les composés insaturés par liaisons sont en général moins stables au sens thermodynamique que les composés saturés correspondants : l'addition d'atomes sur les liaisons multiples est donc souvent favorisée en raison de cette instabilité, ce qui permet de les utiliser dans de nombreuses réactions comme produits initiaux. C'est d'ailleurs cette propriété qui est employé dans l'usage de l'éthyne (soudure à l'acétylène)
Cette instabilité se retrouve sous un autre aspect dans de nombreuses réactions chimiques, puisque certains des intermédiaires de réactions / états de transitions s'avèrent être des composés insaturés, comme par exemple dans la réaction de Wittig. Lire la suite